N7 - THERMODYNAMICS

Gibbs Free Energy

Now it is time for some math!

Gibbs Free Energy

Gibbs free energy, *G* - the maximum amount of work energy that can be released to the surroundings by a system for a constant temp and pressure system.

Gibbs free energy is often called the **chemical potential** because it is similar to the storing of energy in a mechanical system.

It can be shown that:

$$-\mathsf{T}\Delta S_{\rm univ} = \Delta H_{\rm sys} - \mathsf{T}\Delta S_{\rm sys}$$

This turns into...

It can be shown that:

$$-\mathsf{T}\Delta S_{\rm univ} = \Delta H_{\rm sys} - \mathsf{T}\Delta S_{\rm sys}$$

This turns into...

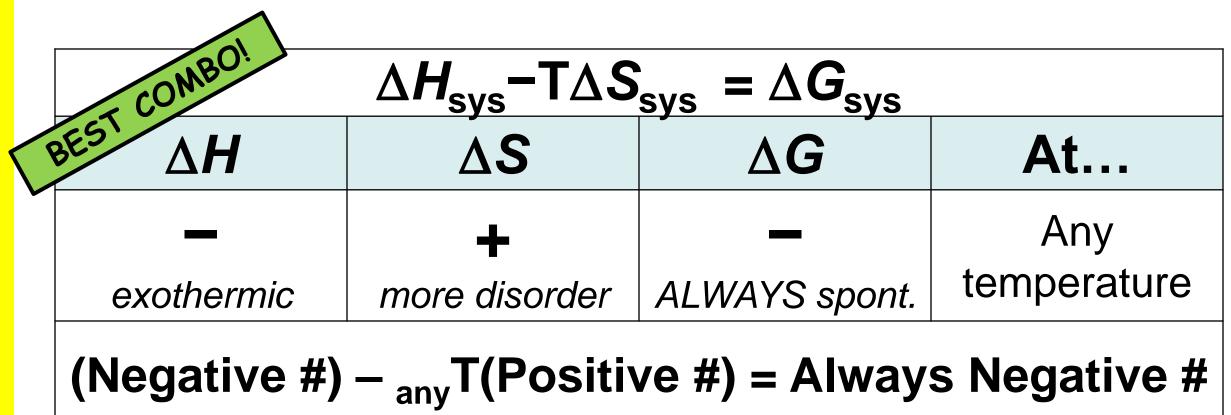
$\Delta G_{\rm sys} = \Delta H_{\rm sys} - T\Delta S_{\rm sys}$

Important Equation!!!

Gibbs Free Energy

$$-T\Delta S_{univ} = \Delta H_{sys} - T\Delta S_{sys}$$
$$\Delta G_{sys} = \Delta H_{sys} - T\Delta S_{sys}$$

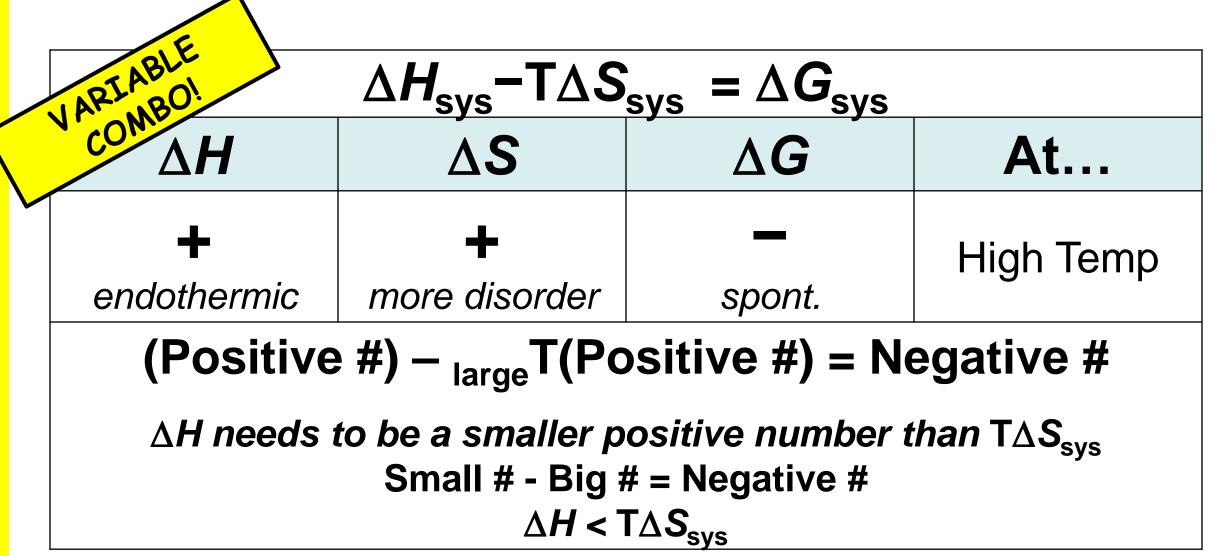
- Because ΔS_{univ} determines if a process is spontaneous, ΔG also determines spontaneity.
- ΔS_{univ} is positive when spontaneous, so ΔG is negative.


A process will be spontaneous when ΔG is negative

Important fact that lets us do a lot of math!


It is very common for them to ask you to predict if a reaction is spontaneous based on just the algebraic sign on ΔH and ΔS

You need to use the Gibbs equation to see if ΔG ends up + or -


$$\Delta G_{\rm sys} = \Delta H_{\rm sys} - T\Delta S_{\rm sys}$$

Remember T is in Kelvin, always a positive number

Notice the double negative! \rightarrow (Positive #) + (Positive #)

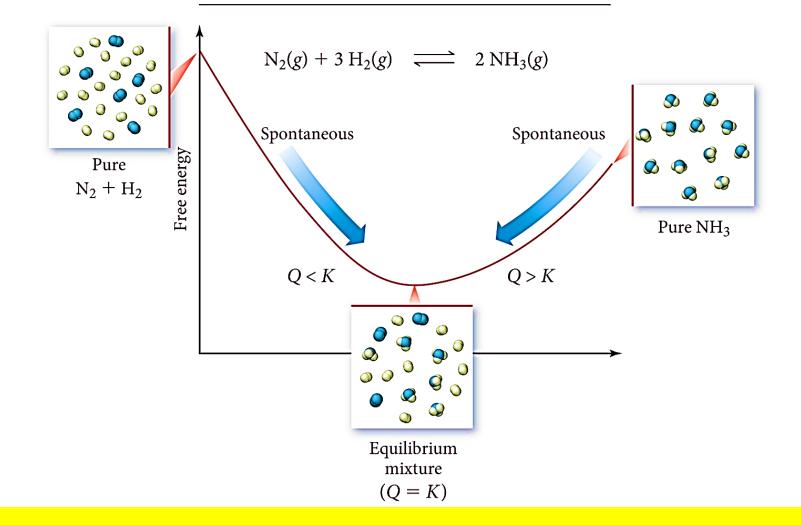
	ARTABLE CONBOI	$\Delta H_{\rm sys}$ –T $\Delta S_{\rm sys}$	$_{\rm sys} = \Delta G_{\rm sys}$		
	CONΔH	ΔS	ΔG	At	
	- exothermic	– less disorder	spont.	Low Temp	
(Negative #) – $_{\text{small}}$ T(Negative #) = Negative Notice the double negative! \rightarrow (Negative #) + (Positive ΔH needs to be a larger negative than T ΔS_{sys} $\Delta H < T\Delta S_{\text{sys}}$					

This always makes my brain feel scrambled... figure out what works for you.

- Flat out memorize it (best, fastest)
- Write out the equation and +/- and walk through the mental math each time (what I do because I'm lazy, and I'm not taking timed tests like you are – ha!)
- Find/make a mnemonic? (Tell me if you find a good one!)

YOU CANT LET YOUR BRAIN SHUT DOWN Don't let it feel confused and shut off... just walk through it slowly...

$\Delta H_{\rm sys} - T\Delta S_{\rm sys} = \Delta G_{\rm sys}$				
ΔH	ΔS	ΔG	At	
exothermic	+ more disorder		Any temp	
↓ endothermic	less disorder	↓ NEVER spont.	Any temp	
exothermic	less disorder	spont.	Low Temp	
exothermic	less disorder	+ NOT spont.	High Temp	
↓ endothermic	+ more disorder	spont.	High Temp	
↓ endothermic	+ more disorder	+ NOT spont.	Low Temp	


	∆H <o< th=""><th>AH ≻ O</th><th></th></o<>	AH ≻ O	
<u> </u>	spontaneous at all T (AG<0)	Spontaneous at high T (when TAS is large)	So many versions online, find one you
D S40	Spontaneous at Iow T (when TAS is small)	Non-spontaneous at all T (DG>O)	like! If you find a good one, always share with me! ©

Gibbs at Equilibrium

When $\Delta G = 0$ the reaction is at **equilibrium**.

Gibbs at Equilibrium

Gibbs Free Energy Determines the Direction of Spontaneous Change

Calculating Free Energy

Method #1- Gibbs-Helmohotz Equation

$\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T} \Delta \mathbf{S}^{\circ}$

For reactions at a constant temperature

Calculating Free Energy

Method #2- A variation of Hess's Law

Calculating Free Energy

Method #3- Standard Free Energy of Formations

$$\Delta G^{0} = \sum n_{p} \Delta G^{0}_{f(\text{products})} - \sum n_{r} \Delta G^{0}_{f(\text{reactants})}$$

 ΔG_{f}^{0} of an element in its standard state is zero

Free Energy and Pressure

- Enthalpy, H, is not pressure dependent
- Entropy, S <u>yes</u> pressure dependent

-Depends on volume, so also depends on pressure

• So Gibbs will change because S changes

Slarge volume > Ssmall volume
Slow pressure > Shigh pressure

$\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RTLn}(\mathbf{Q}),$

Where ΔG is at some non standard condition, and ΔG^0 is standard 1 atm, Q is some condition not at equilibrium

 $\frac{\text{Remember}}{\text{K}} - \text{K} = \text{equilibrium}, \text{Q} = \text{not at equilibrium}$ K = Q at equilibrium

Equilibrium point occurs at the lowest value of free energy available to the reaction system At equilibrium: $\Delta G = 0$ and Q = K

ΔG^0	K	
$\Delta G^0 = 0$	K = 1	
$\Delta G^0 < 0$	K > 1	
$\Delta G^0 > 0$	K < 1	

$\Delta G = \Delta G^{\circ} + RTLn(Q)$

So if at equilibrium $\Delta G = 0$ and $K = Q \dots$

$\mathbf{0} = \Delta \mathbf{G}^{\circ} + \mathbf{RTLn}(\mathbf{K})$

Then rearrange...

$\Delta G^{\circ} = -RTLn(K)$

where R=8.314J/mol•K

Reminder....

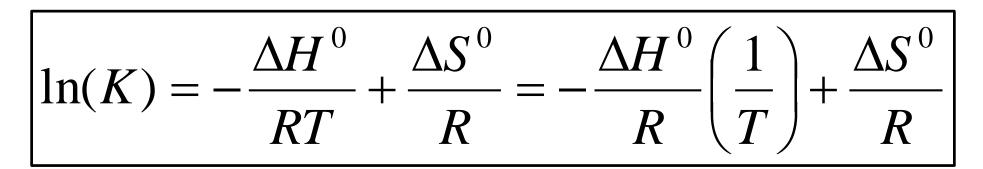
If you use the Hess's Law style method for Gibbs problems, where you have to add together various rxns, you need to edit your Keq value when you add/multiply your equations!

Multiplying an Equation – Raise K to that exponent Double the Rxn = K² Half the Rxn = K^{1/2} Adding Reactions at the End – Multiply K values $K_{overall} = K_1 \times K_2 \times K_3$, etc Then you can do things like - $\Delta G^{\circ} = -RTLn(K)$

So if...

$\Delta G^{\circ} = -RTLn(K)$

And if...


$\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T} \Delta \mathbf{S}^{\circ}$

Then...

 $\Delta G^0 = -RT \ln(K) = \Delta H^0 - T\Delta S^0$

$$\Delta G^0 = -RT \ln(K) = \Delta H^0 - T\Delta S^0$$

Rearrange to solve for ln(K)....

So.... In(K) $\propto 1/T$ And that equation looks like y = mx + b

You can find ΔH° and ΔS° by graphing! $\ln(K) = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$ $\mathbf{y} = \mathbf{m} \mathbf{x} + \mathbf{b}$

1st - Graph In(K) vs
$$\left(\frac{1}{T}\right)$$

2nd - Find line of best fit (Excel or graphing calculator)
3rd - Slope = $-\frac{\Delta H^{\circ}}{R}$ Intercept = $\frac{\Delta S^{\circ}}{R}$

Soooo many rearrangements...

- There are so many ways to rearrange, substitute, and solve for various things when it comes to Thermodynamics.
 You HAVE to have decent algebra skills!
- My best advice if algebra is not your strong suit...
 - Practice over and over until it becomes "muscle memory" how to rearrange.
 - Every time you have a question that requires a different equation rearrangement/substitution, write it down! Start making your own equation cheat sheet.

For the Rx: $2NO(g) + O_2(g) \rightarrow 2NO_2(g) \Delta S^{\circ}_{rxn} = -146.5 \text{ J/mol} \cdot \text{K}$ Calculate the standard molar entropy of $O_2(g)$. $\Delta S^{\circ}_{NO(g)} = 210.8 \text{ J/mol} \cdot \text{K}$, $\Delta S^{\circ}_{NO2(g)} = 240.1 \text{ J/mol} \cdot \text{K}$

B

E

- 269.4 J mol⁻¹K⁻¹
- **C** -205.1 J mol⁻¹ K⁻¹
- D 205.1 J mol⁻¹ K⁻¹
 - None of the above

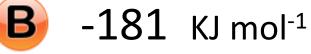
For the Rx: $2NO(g) + O_2(g) \rightarrow 2NO_2(g) \Delta S^{\circ}_{rxn} = -146.5 \text{ J/mol} \cdot \text{K}$ Calculate the standard molar entropy of $O_2(g)$. $\Delta S^{\circ}_{NO(g)} = 210.8 \text{ J/mol} \cdot \text{K}$, $\Delta S^{\circ}_{NO2(g)} = 240.1 \text{ J/mol} \cdot \text{K}$

$$\Delta S_{rxn} = \Sigma \Delta S_{Products} - \Sigma \Delta S_{reactants}$$
-175.8 J mol⁻¹K⁻¹
(-146.5) = [2(240.1)] - [2(210.8) + \Delta S^{\circ}_{O2}]
269.4 J mol⁻¹K⁻¹

$$\Delta S^{\circ}_{O2} = 205.1 \text{ Jmol}^{-1}\text{K}^{-1}$$

205.1 J mol⁻¹ K⁻¹

B


E

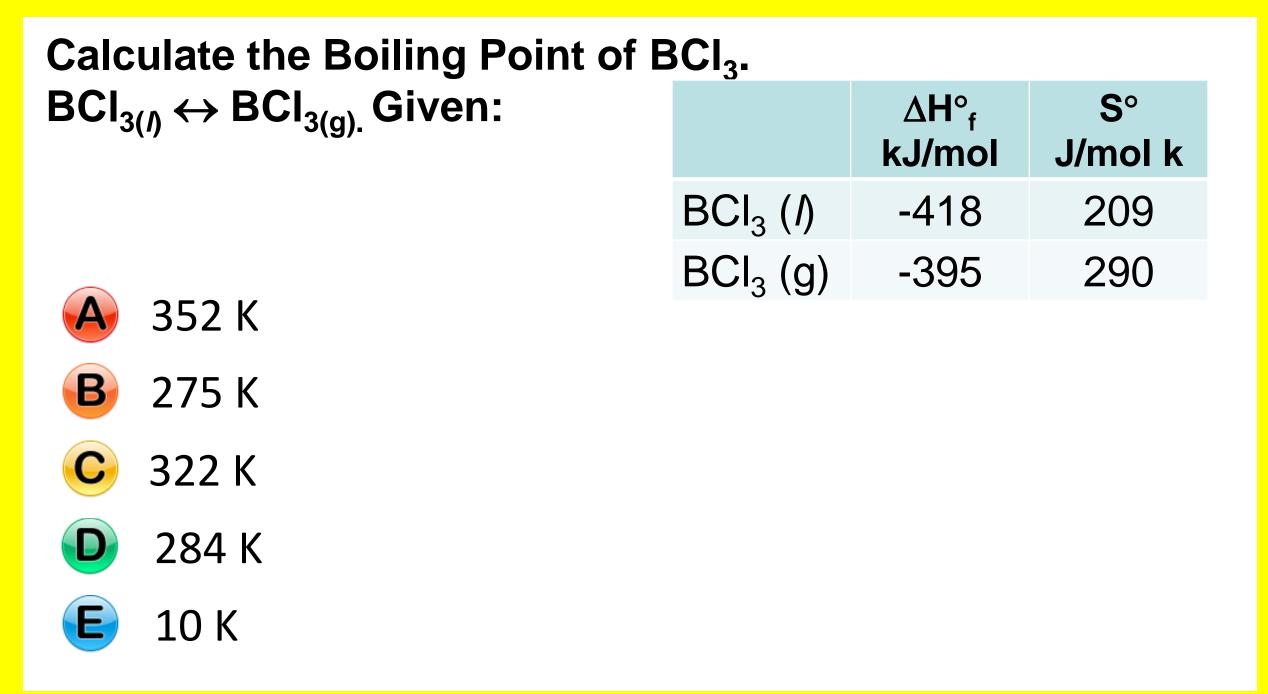
None of the above

For the following Rx: $N_2(g) + H_2(g) \rightarrow NH_3(g)$ Calculate the standard Free Energy, ΔG° for the rxn at 25°C. $\Delta H^\circ = -264 k J/mol$ $\Delta S^\circ = -278 J/mol \cdot K$

181 KJ mol⁻¹

For the following Rx: $N_2(g) + H_2(g) \rightarrow NH_3(g)$ Calculate the standard Free Energy, ΔG° for the rxn at 25°C. $\Delta H^\circ = -264 \text{kJ/mol}$ $\Delta S^\circ = -278 \text{ J/mol} \cdot \text{K}$

E


-82.5 KJ mol⁻¹

- **B** -181 KJ mol⁻¹
 - -6686 KJ mol⁻¹
 - 181 KJ mol⁻¹
 - None of the above

 $\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T} \Delta \mathbf{S}^{\circ}$ $\Delta \mathbf{G}^{\circ} = (-264) - 298(-0.278)$

 $\Delta G^{\circ} = -181 \text{ KJ mol}^{-1}$

Careful about units matching! H and S usually don't match! Convert before you use them!

Calculate the Boiling Point of BCl ₃ .						
$BCI_{3(I)} \leftrightarrow BCI_{3(g)}$ Given:			∆H° _f	ΔS°		
Phase change - at equilibrium				kJ/mol	J/mol k	
Phase change - at equilibrium! So $\Delta G = 0$		BCl ₃ (<i>I</i>)	-418	209		
			$BCI_{3}(g)$	-395	290	
A	352 K					
B	275 K	$\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ}$	$\Delta \mathbf{G}^\circ = \Delta \mathbf{H}^\circ - \mathbf{T} \Delta \mathbf{S}^\circ$			
C	322 K	0 = (-395 –	0 = (-395 – -418) – T(0.290 – 0.209)			
	284 K	T = 284 K				
E	10 K					

What is ΔG° for the following Rx @ 25.0°C: **2 NH₃(g)** \rightarrow N₂(g) + 3 H₂(g) ΔH° = 92.4 kJ, ΔS° = 198 J/K

B 33.40 kJ

C

- $\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} \mathbf{T} \Delta \mathbf{S}^{\circ}$
- -497.64 kJ $\Delta G^{\circ} = (92.4) 298(0.198)$
- **D** 87.45 kJ $\Delta G^{\circ} = 33.4 \text{ kJ}$

E -4857.6 kJ

What is ΔG° for the following Rx @ 25.0°C: **2 NH₃(g)** \rightarrow N₂(g) + 3 H₂(g) ΔH° = 92.4 kJ, ΔS° = 198 J/K

B 33.40 kJ

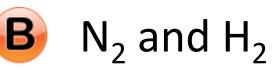
C

 $\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T} \Delta \mathbf{S}^{\circ}$

- -497.64 kJ $\Delta G^{\circ} = (92.4) 298(0.198)$
- **D** 87.45 kJ $\Delta G^{\circ} = 33.4 \text{ kJ}$

E -4857.6 kJ

Under standard conditions (1 atm of NH_3 , N_2 and H_2) and at 298 K, what will be formed? ($\Delta G^{\circ} = 33.4 \text{ kJ}$) $2 \text{ NH}_3(g) \rightarrow N_2(g) + 3 \text{ H}_2(g)$


 \mathbf{B} N₂ and H₂

- Equal amounts of all three gases
- Need more information

Under standard conditions (1 atm of NH₃, N₂ and H₂) and at 298 K, what will be formed? ($\Delta G^{\circ} = 33.4 \text{ kJ}$) 2 NH₃(g) $\rightarrow N_2(g) + 3 H_2(g)$

> Δ G = + so not spontaneous in reverse direction, reactants will be produced not products

NH₃

C

- Equal amounts of all three gases
- Need more information

Calculate the equilibrium constant for this reaction at 298 K. $2 NH_3(g) \rightarrow N_2(g) + 3 H_2(g) (\Delta G^\circ = 33.4 \text{ kJ})$

1.014

609048.5

1.397 E-6

Need to know

equilibrium []'s

to calculate Keq

B

С

Calculate the equilibrium constant for this reaction at 298 K. $2 NH_3(g) \rightarrow N_2(g) + 3 H_2(g) (\Delta G^\circ = 33.4 \text{ kJ})$

 $\Delta \mathbf{G}^{\circ} = -\mathbf{RT} \ln(\mathbf{K})$

A 1.014 33400= -(8.314)(298)In(K)

609048.5 -13.48 = ln(K)

C 1.397 E-6 $e^x = y$ ln(y) = x $e^{-13.48} = K$

Need to know equilibrium []'s to calculate Keq

B

 $K = 1.397 \times 10^{-6}$