N7-THERMODYNAMICS

Gibbs Free Energy

Now it is time for some math!

Yay!

Gibbs Free Energy

Gibbs free energy, G - the maximum amount of work energy that can be released to the surroundings by a system for a constant temp and pressure system.

Gibbs free energy is often called the chemical potential because it is similar to the storing of energy in a mechanical system.

Gibbs Free Energy

It can be shown that:

$$
-\mathrm{T} \Delta S_{\mathrm{univ}}=\Delta H_{\mathrm{sys}}-\mathrm{T} \Delta S_{\mathrm{sys}}
$$

This turns into...

Gibbs Free Energy

It can be shown that:

$$
-\mathrm{T} \Delta S_{\mathrm{univ}}=\Delta H_{\mathrm{sys}}-\mathrm{T} \Delta S_{\mathrm{sys}}
$$

This turns into...

Gibbs Free Energy

$\Delta G_{\text {sys }}=\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}$

Important Equation!!!

Gibbs Free Energy

$$
\begin{gathered}
-\mathrm{T} \Delta S_{\mathrm{univ}}=\Delta H_{\text {sys }}-\mathrm{T} \Delta S_{\text {sys }} \\
\Delta G_{\text {sys }}=\Delta H_{\text {sys }}-\mathrm{T} \Delta S_{\text {sys }}
\end{gathered}
$$

- Because $\Delta S_{\text {univ }}$ determines if a process is spontaneous, ΔG also determines spontaneity.
- $\Delta S_{\text {univ }}$ is positive when spontaneous, so ΔG is negative.

Gibbs Free Energy

A process will be spontaneous when ΔG is negative

Important fact that lets us do a lot of math!

Mental Math with Gibbs Free Energy

It is very common for them to ask you to predict if a reaction is spontaneous based on just the algebraic sign on $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$

You need to use the Gibbs equation to see if $\Delta \mathbf{G}$ ends up + or -

$$
\Delta G_{\text {sys }}=\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}
$$

Mental Math with Gibbs Free Energy

$\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}=\Delta G_{\text {sys }}$			
ΔH	ΔS	ΔG	At...
		ALWAYS spont	Any temperature
(Negative \#) any $_{\text {any }} \mathbf{T}$ (Positive \#) = Always Negative \#			

Remember T is in Kelvin, always a positive number

Mental Math with Gibbs Free Energy

Notice the double negative! \rightarrow (Positive \#) + (Positive \#)

Mental Math with Gibbs Free Energy

$\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}=\Delta G_{\text {sys }}$

	$\Delta H_{\text {sys }}-\mathrm{T} \Delta S_{\text {sys }}=\Delta G_{\text {sys }}$		
con Δ	ΔS	ΔG	At...
endothermic	more disorder	spont.	High Temp

(Positive \#) - large \mathbf{T} (Positive \#) = Negative \#
ΔH needs to be a smaller positive number than $T \Delta S_{\text {sys }}$ Small \# - Big \# = Negative \#

$$
\Delta H<T \Delta S_{\mathrm{sys}}
$$

Mental Math with Gibbs Free Energy

$\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}=\Delta G_{\text {sys }}$

(Negative \#) - small ${ }^{\text {T(Negative \#) }}$ = Negative \#
Notice the double negative! \rightarrow (Negative \#) + (Positive \#) ΔH needs to be a larger negative than $\mathrm{T} \Delta S_{\text {sys }}$ $\Delta H<T \Delta S_{\text {sys }}$

Mental Math with Gibbs Free Energy

This always makes my brain feel scrambled... figure out what works for you.

- Flat out memorize it (best, fastest)
- Write out the equation and +/- and walk through the mental math each time (what I do because I'm lazy, and I'm not taking timed tests like you are - ha!)
- Find/make a mnemonic? (Tell me if you find a good one!)

> YOU CANT LET YOUR BRAIN SHUT DOWN
> Don't let it feel confused and shut off... just walk through it slowly...

$\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}=\Delta G_{\text {sys }}$			
ΔH	ΔS	ΔG	At...
exothermic	more disorder	ALWAYS spont.	Any temp
endothermic	less disorder	NEVER spont	Any temp
exothermic	less disorder	spont.	Low Temp
exothermic	less disorder	NOT spont.	High Temp
endothermic	more disorder	spont.	High Temp
endothermic	more disorder	NOT spont.	Low Temp

So many versions online, find one you like! If you find a good one, always share with me! ©

Gibbs at Equilibrium

When $\Delta G=0$

the reaction is at equilibrium.

Gibbs at Equilibrium

Gibbs Free Energy Determines the
Direction of Spontaneous Change

Calculating Free Energy

Method \#1- Gibbs-Helmohotz Equation

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

For reactions at a constant temperature

Calculating Free Energy

Method \#2- A variation of Hess's Law

$$
\begin{array}{ll}
C_{\text {diamond }}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta G^{0}=-397 \mathrm{~kJ} \\
C_{\text {graphite }}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta G^{0}=-394 \mathrm{~kJ} \\
C_{\text {diamond }}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta G^{0}=-397 \mathrm{~kJ} \\
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow C_{\text {graphite }}(\mathrm{s})+0 / 2(\mathrm{~g}) & \Delta G^{0}=+394 \mathrm{~kJ} \\
\hline C_{\text {diamond }}(\mathrm{s}) \rightarrow C_{\text {graphite }}(\mathrm{s}) & \Delta G^{0}=-3 \mathrm{~kJ}
\end{array}
$$

Calculating Free Energy

Method \#3- Standard Free Energy of Formations

$$
\Delta G^{0}=\sum n_{p} \Delta G_{f(\text { products })}^{0}-\sum n_{r} \Delta G_{f(\text { reactants })}^{0}
$$

$\Delta G_{f}{ }^{0}$ of an element in its standard state is zero

Free Energy and Pressure

- Enthalpy, H, is not pressure dependent
- Entropy, S - yes pressure dependent
- Depends on volume, so also depends on pressure
- So Gibbs will change because S changes
$\mathrm{S}_{\text {large volume }}>\mathrm{S}_{\text {small volume }}$
$\mathrm{S}_{\text {low pressure }}>\mathrm{S}_{\text {high pressure }}$

Free Energy and Equilibrium

$\Delta \mathbf{G}=\Delta \mathbf{G}^{\circ}+\mathbf{R T L n}(\mathbf{Q})$,

Where $\Delta \mathrm{G}$ is at some non standard condition, and ΔG^{0} is standard $1 \mathrm{~atm}, \mathrm{Q}$ is some condition not at equilibrium

Remember $-K=$ equilibrium, $Q=$ not at equilibrium $K=Q$ at equilibrium

Free Energy and Equilibrium

Equilibrium point occurs at the lowest value of free energy available to the reaction system At equilibrium: $\Delta \mathrm{G}=0$ and $\mathrm{Q}=\mathrm{K}$

$\Delta \mathbf{G}^{\mathbf{0}}$	\mathbf{K}
$\Delta \mathrm{G}^{0}=0$	$\mathrm{~K}=1$
$\Delta \mathrm{G}^{0}<0$	$\mathrm{~K}>1$
$\Delta \mathrm{G}^{0}>0$	$\mathrm{~K}<1$

Free Energy and Equilibrium

$$
\Delta G=\Delta \mathbf{G}^{\circ}+\mathbf{R T L n}(\mathbf{Q})
$$

So if at equilibrium $\Delta G=0$ and $K=Q \ldots$

$$
0=\Delta G^{\circ}+R T \operatorname{Ln}(K)
$$

Then rearrange...

$$
\Delta G^{\circ}=-\operatorname{RTLn}(K)
$$

where $R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

Reminder....

If you use the Hess's Law style method for Gibbs problems, where you have to add together various rxns, you need to edit your Keq value when you add/multiply your equations!

Multiplying an Equation - Raise K to that exponent Double the $\mathrm{Rxn}=\mathrm{K}^{2} \quad$ Half the $\mathrm{Rxn}=\mathrm{K}^{1 / 2}$
Adding Reactions at the End - Multiply K values

$$
\mathrm{K}_{\text {overall }}=\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3} \text {, etc }
$$

Then you can do things like $-\Delta G^{\circ}=-R T \operatorname{Ln}(K)$

Free Energy and Equilibrium

So if...

$$
\Delta G^{\circ}=-\operatorname{RTLn}(K)
$$

And if...

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

Then...

$$
\Delta G^{0}=-R T \ln (K)=\Delta H^{0}-T \Delta S^{0}
$$

Free Energy and Equilibrium

$$
\Delta G^{0}=-R T \ln (K)=\Delta H^{0}-T \Delta S^{0}
$$

Rearrange to solve for $\ln (\mathrm{K}) \ldots$

$$
\ln (K)=-\frac{\Delta H^{0}}{R T}+\frac{\Delta S^{0}}{R}=-\frac{\Delta H^{0}}{R}\left(\frac{1}{T}\right)+\frac{\Delta S^{0}}{R}
$$

So.... $\ln (K) \propto 1 / T$
And that equation looks like $\mathrm{y}=\mathrm{mx}+\mathrm{b} . .$.

Free Energy and Equilibrium

You can find $\Delta \mathbf{H}^{\circ}$ and $\Delta \mathbf{S}^{\circ}$ by graphing!

$$
\begin{aligned}
\ln (\mathrm{K}) & =-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T}\right)+\frac{\Delta S^{\circ}}{R} \\
\mathbf{y} & =\mathrm{m} \quad \mathrm{x}+\mathrm{b}
\end{aligned}
$$

$1^{\text {st }}$ - Graph $\operatorname{In}(\mathrm{K})$ vs $\left(\frac{1}{T}\right)$
$2^{\text {nd }}$ - Find line of best fit (Excel or graphing calculator)
$3^{\text {rd }}-$ Slope $=-\frac{\Delta H^{\circ}}{R} \quad$ Intercept $=\frac{\Delta S^{\circ}}{R}$

Soooo many rearrangements...

- There are so many ways to rearrange, substitute, and solve for various things when it comes to Thermodynamics.

You HAVE to have decent algebra skills!

- My best advice if algebra is not your strong suit...
-Practice over and over until it becomes "muscle memory" how to rearrange.
-Every time you have a question that requires a different equation rearrangement/substitution, write it down! Start making your own equation cheat sheet.

For the Rx: $\mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2} \mathbf{N O}_{\mathbf{2}}(\mathrm{g}) \Delta \mathrm{S}^{\circ}{ }_{\mathrm{rxn}}=-146.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ Calculate the standard molar entropy of $\mathrm{O}_{2}(\mathrm{~g})$. $\Delta \mathrm{S}^{\circ}{ }_{\mathrm{NO}(\mathrm{g})}=210.8 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{K}, \Delta \mathrm{S}^{\circ}{ }_{\mathrm{NO} 2(\mathrm{~g})}=240.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
(A) $-175.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(B) $269.4 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

C $-205.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(D $\quad 205.1 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
E None of the above

For the Rx: $\mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2} \mathbf{N O}_{\mathbf{2}}(\mathrm{g}) \Delta \mathrm{S}^{\circ}{ }_{\mathrm{rxn}}=-146.5 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{K}$ Calculate the standard molar entropy of $\mathrm{O}_{2}(\mathrm{~g})$. $\Delta \mathrm{S}^{\circ}{ }_{\mathrm{NO}(\mathrm{g})}=210.8 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{K}, \Delta \mathrm{S}^{\circ}{ }_{\mathrm{NO} 2(\mathrm{~g})}=240.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
(A) $-175.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

$$
\Delta S_{r x n}=\Sigma \Delta S_{\text {Products }}-\Sigma \Delta S_{\text {reactants }}
$$

B $269.4 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

$$
(-146.5)=[2(240.1)]-\left[2(210.8)+\Delta \mathrm{S}^{\circ}{ }_{02}\right]
$$

C $-205.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
D $205.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
E None of the above

For the following Rx: $\mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{N H}_{\mathbf{3}}(\mathrm{g})$

Calculate the standard Free Energy, $\Delta \mathrm{G}^{\circ}$ for the rxn at $25^{\circ} \mathrm{C}$. $\Delta H^{\circ}=-264 \mathrm{~kJ} / \mathrm{mol} \quad \Delta S^{\circ}=-278 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
(A) $-82.5 \mathrm{KJ} \mathrm{mol}^{-1}$
(B) $-181 \mathrm{~kJ} \mathrm{~mol}^{-1}$

C $-6686 \mathrm{KJ} \mathrm{mol}^{-1}$
(D) $181 \mathrm{~kJ} \mathrm{~mol}^{-1}$

E None of the above

For the following Rx: $\mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{N H}_{3}(\mathrm{~g})$
Calculate the standard Free Energy, $\Delta \mathrm{G}^{\circ}$ for the rxn at $25^{\circ} \mathrm{C}$. $\Delta H^{\circ}=-264 \mathrm{~kJ} / \mathrm{mol} \quad \Delta S^{\circ}=-278 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
(A) $-82.5 \mathrm{KJ} \mathrm{mol}^{-1}$

$$
\Delta \mathbf{G}^{\circ}=\Delta \mathbf{H}^{\circ}-\mathbf{T} \Delta \mathbf{S}^{\circ}
$$

$$
\Delta G^{\circ}=(-264)-298(-0.278)
$$

$$
\Delta \mathrm{G}^{\circ}=-181 \mathrm{KJ} \mathrm{~mol}^{-1}
$$

Careful about units matching! H and S usually don't match! Convert before you use them!
E None of the above

Calculate the Boiling Point of BCI_{3}.

 $\mathrm{BCl}_{3(\mathrm{f}} \leftrightarrow \mathrm{BCl}_{3(\mathrm{~g})}$. Given:| | $\Delta \mathbf{H}^{\circ}{ }_{\mathbf{f}}$
 $\mathbf{k J / m o l}$ | \mathbf{S}°
 $\mathbf{J} / \mathbf{m o l} \mathbf{k}$ |
| :--- | :---: | :---: |
| $\mathrm{BCl}_{3}($ () | -418 | 209 |
| $\mathrm{BCl}_{3}(\mathrm{~g})$ | -395 | 290 |

(A) 352 K
(B) 275 K

C 322 K
(D) 284 K
(E) 10 K

Calculate the Boiling Point of BCl_{3}.

$\mathrm{BCl}_{3(\mathrm{n}} \leftrightarrow \mathrm{BCl}_{3(\mathrm{~g})}$. Given:

Phase change - at equilibrium!
So $\Delta \mathbf{G}=0$

	$\Delta \mathbf{H}^{\circ}{ }^{\mathbf{i}}$ $\mathbf{k J} / \mathbf{m o l}$	$\Delta \mathbf{S}^{\circ}$ $\mathbf{J} / \mathbf{m o l} \mathbf{k}$
$\mathrm{BCl}_{3}(\mathrm{n})$	-418	209
$\mathrm{BCl}_{3}(\mathrm{~g})$	-395	290

(A) 352 K
(B) 275 K

$$
\Delta \mathbf{G}^{\circ}=\Delta \mathbf{H}^{\circ}-\mathbf{T} \Delta \mathbf{S}^{\circ}
$$

C 322 K
$0=(-395-418)-T(0.290-0.209)$
(D) 284 K
$\mathrm{T}=284 \mathrm{~K}$
(E) 10 K

What is $\Delta \mathrm{G}^{\circ}$ for the following $R x @ 25.0^{\circ} \mathrm{C}$:
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathbf{N}_{2}(\mathrm{~g})+3 \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \quad \Delta \mathrm{H}^{\circ}=92.4 \mathrm{~kJ}, \Delta \mathrm{~S}^{\circ}=198 \mathrm{~J} / \mathrm{K}$
(A) -58911.6 kJ

B $33.40 \mathrm{~kJ} \quad \Delta \mathbf{G}^{\circ}=\Delta \mathbf{H}^{\circ}-\mathbf{T} \Delta \mathbf{S}^{\circ}$
C $-497.64 \mathrm{~kJ} \quad \Delta \mathrm{G}^{\circ}=(92.4)-298(0.198)$
(D) $87.45 \mathrm{~kJ} \quad \Delta \mathrm{G}^{\circ}=33.4 \mathrm{~kJ}$
(E) -4857.6 kJ

What is $\Delta \mathrm{G}^{\circ}$ for the following $R x @ 25.0^{\circ} \mathrm{C}$:
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathbf{N}_{\mathbf{2}}(\mathrm{g})+3 \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \quad \Delta \mathrm{H}^{\circ}=92.4 \mathrm{~kJ}, \Delta \mathrm{~S}^{\circ}=198 \mathrm{~J} / \mathrm{K}$
(A) -58911.6 kJ

B $33.40 \mathrm{~kJ} \quad \Delta \mathbf{G}^{\circ}=\Delta \mathbf{H}^{\circ}-\mathbf{T} \Delta \mathbf{S}^{\circ}$
C $-497.64 \mathrm{~kJ} \quad \Delta \mathrm{G}^{\circ}=(92.4)-298(0.198)$
(D) $87.45 \mathrm{~kJ} \quad \Delta \mathrm{G}^{\circ}=33.4 \mathrm{~kJ}$
(E) -4857.6 kJ

Under standard conditions (1 atm of $\mathrm{NH}_{3}, \mathrm{~N}_{2}$ and H_{2}) and at 298 K , what will be formed? $\left(\Delta \mathrm{G}^{\circ}=33.4 \mathrm{~kJ}\right)$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
(A) NH_{3}

B N_{2} and H_{2}
C Equal amounts of all three gases
D Need more information

Under standard conditions (1 atm of $\mathrm{NH}_{3}, \mathrm{~N}_{2}$ and H_{2}) and at 298 K , what will be formed? $\left(\Delta \mathrm{G}^{\circ}=33.4 \mathrm{~kJ}\right)$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
(A) NH_{3}

B N_{2} and H_{2}
$\Delta \mathbf{G}=+$ so not spontaneous in reverse direction, reactants will be produced not products

C Equal amounts of all three gases
D Need more information

Calculate the equilibrium constant for this reaction at 298 K . $\mathbf{2} \mathbf{N H}_{\mathbf{3}}(\mathrm{g}) \rightarrow \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g})\left(\Delta \mathrm{G}^{\circ}=33.4 \mathrm{~kJ}\right)$
(A) 1.014
(B) 609048.5

C $\quad 1.397 \mathrm{E}-6$
D Need to know equilibrium []'s to calculate Keq

Calculate the equilibrium constant for this reaction at 298 K . $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathbf{N}_{\mathbf{2}}(\mathrm{g})+3 \mathrm{H}_{\mathbf{2}}(\mathrm{g})\left(\Delta \mathrm{G}^{\circ}=33.4 \mathrm{~kJ}\right)$

$$
\Delta \mathbf{G}^{\circ}=-\mathrm{RT} \ln (\mathrm{~K})
$$

(A) 1.014 $33400=-(8.314)(298) \ln (K)$
(B 609048.5
$-13.48=\ln (K)$
C $\quad 1.397 \mathrm{E}-6$

$$
e^{x}=y \quad \ln (y)=x \quad e^{-13.48}=K
$$

D Need to know

$$
\mathrm{K}=1.397 \times 10^{-6}
$$

